

WEEKLY TEST MEDICAL PLUS -02 TEST - 02 Balliwala SOLUTION Date 14-07-2019

[CHEMISTRY]

- 46. (b) The number of electrons in an atom is equal to its atomic number *i.e.* number of protons.
- 47. (a) No. of protons = Atomic no. = 25 and no. of neutron = 55 25 = 30.
- 48. (a) Na⁺ and Ne are isoelectronic which contain 10 electrons.
- 49. (a) One molecule of CO_2 have 22 electrons.
- 50. (c) Mass of an atom is due to nucleus (neutron + proton).
- 51. (c) Most probable radius = a_0/Z where $a_0 = 52.9$ pm. For helium ion, Z = 2. $r_{\rm mp} = \frac{52.9}{2} = 26.45 \ pm.$
- 52. (c) Na^+ has 10 electron and Li^+ has 2 electron so these are different number of electron from each other.
- 53. (c) $P_{15} = 2, 8, 5$
- 54. (c) $\frac{16}{8}O^{--}$ have more electrons than neutron $p=8,\ e=10,\ n=8$.
- 55. (b) $^{-}$ CONH₂ = 6 + 8 + 7 + 2 + 1 (from other atom to form covalent bond) = 24
- 56. (b) Complete E.C. = $[Ar]^{18} 3d^{10} 4s^2 4p^6$.
- 57. (c) Neutron in ${}_{6}^{12}C = 6$, Neutrons in ${}_{14}^{28}Si = 14$ Ratio = 6: 14 = 3: 7.
- 58. D
- 59. (c) $H^- = 1s^2$ and $He^+ = 1s^2$.
- (a) Number of unpaired electrons in inert gas is zero because they have full filled orbitals.
- 61. (a) In case of N^{3-} , p = 7 and c = 10
- 62. (c) Atomic number of chlorine 17 and in Cl^- ion total no. of electron = 18.
- 63. C
- 64. (a) The central part consisting whole of the positive charge and most of the mass caused by nucleus, is extremely small in size compared to the size of the atom.
- 65. (b) According to the Bohr model atoms or ions contain one
- 66. (c) α -particles pass through because most part of the atom is empty.

- 67. (b) An electron jumps from L to K shell energy is released.
- 68. (b) Both He and Li^+ contain 2 electrons each.
- 69. D
- 70. B
- 71. B
- 72. A
- (a) Increases due to absorption of energy and it shows absorption spectra.
- 74. A
- 75. (c) Emission spectra of different λ accounts for quantisation of energy.
- 76. (d) According to de-Broglie $\left(\lambda = \frac{h}{mv}\right)$.

77. (c)
$$\lambda = \frac{h}{mv} = \frac{6.625 \times 10^{-34}}{0.2 \, \text{kg} \times \frac{5}{60 \times 60 \, \text{ms}^{-1}}} = 10^{-30} \, \text{m} \,.$$

- 78. (a) We know that the correct relationship between wavelength and momentum is $\lambda = \frac{h}{p}$. Which is given by de-Broglie.
- 79. Charge/mass for n = 0, for $\alpha = \frac{2}{4}$, for p = $\frac{1}{1}$, for $e^- = \frac{1}{1/1837}$
- 80.
- 81. A

82. For Be³⁺E_{$$\infty$$} – E₂ = +13.6 $\frac{z^2}{n^2}$
= 13.6 × $\frac{4^2}{2^2}$ 54.4 eV

83.
$$v \propto \frac{Z}{n}; r \propto \frac{n^2}{Z};$$

frequency of revolution = $\frac{V_n}{2\pi r_n}$;

 $Coulombic force of attraction = \frac{Ze^2}{\left(4\pi\epsilon_0\right)r^2}$

84. D

85.
$$\frac{1}{\lambda} = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = R \times 3^2 \left[\frac{1}{1^2} - \frac{1}{2^2} \right]$$

$$\Rightarrow$$
 R or $\lambda = \frac{1}{R}$

86.
$$\frac{1}{\lambda} = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = R \times 2^2 \left[\frac{1}{1^2} - \frac{1}{2^2} \right]$$

$$\Rightarrow$$
 3R; $\lambda = \frac{1}{3R}$

- 87. B
- 88. C
- 89. A
- 90. D